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Substance use epidemic

Deaths per 100000 population

1to2 8 14 21 27 33t058

From: Trends and Patterns of Geographic Variation in Mortality From Substance Use Disorders and Intentional
Injuries Among US Counties, 1980-2014; JAMA. 2018;319(10):1013-1023. doi:10.1001/jama.2018.0900
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Figure 6. U.S. Overdose Deaths Involving Stimulants*
(cocaine and psychostimulants with abuse potential),
by Opioid Involvement, 1999-2022
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*Among deaths with drug overdose as the underlying cause, the psychostimulants with abuse potential (primarily methamphetamine)
category was determined by the T43.6 ICD-10 multiple cause-of-death code. Abbreviated to psychostimulants in the bar chart above.
Source: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2022 on CDC
WONDER Online Database, released 4/2024.
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Clinical reality

e Evidence-based treatments exist

e Same tx highly variable across individuals

e High relapse rates
— retention in opioid tx <6 months for 30-50%

— increased overdose risk following treatment

e ‘Traditional’ variables do not predict
— e.q., little variance explained by baseline use
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Neuroimaging of addiction outcomes
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Some Iimitations:

> Need more studies of opioid-use disorder

> Most studies single fimepoint
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Drug-cue findings (aggaregate)

Prefrontal cortex

Regions of interest Drug-cue reactivity
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Moningka et al., Neuropsychopharmacology 2019
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Treatment and abstinence effects

Prefrontal cortex

Medication-assisted treatment Abstinence effects

@ INCREASE @ DECREASE

Striatum (reward)

replication and longitudinal research needed
Moningka et al., Neuropsychopharmacology 2019
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Some Iimitations:

> Need more studies of opioid-use disorder
> Systematic review
> Most studies single fimepoint

> Need to identify brain predictors
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TECHNIQUES AND METHODS

When Optimism Hurts: Inflated Predictions in

Psychiatric Neuroimaging
Robert Whelan and Hugh Garavan

> Term ‘predicts’ offen misused

> Correlation # prediction

> Over-fitting models limits reproducibility
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Machine learning (aka predictive modeling)

e Training dataset > predictive model
e Test dataset > model validation
e Goal = generate predictions in hovel data

e Key step for translation intfo clinical setting

e Can also be used for neurobiological discovery
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' PROTOCOL

Using connectome-based predictive modeling to
predict individual behavior from brain connectivity

Xilin Shen!, Emily S Finn2, Dustin Scheinost!, Monica D Rosenberg3, Marvin M Chun?-4,
Xenophon Papademetris!-> & R Todd Constable!»2:6

506 | VOL.12 NO.3 | 2017 | NATURE PROTOCOLS

> data-driven machine learning approach
> NO a priori specification of networks

> predict and identify networks
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YA comprehensive...description of the
network of elements and connections
forming the human brain. We propose to call
this dataset the human “connectome,” and
we argue that it is fundamentally important
IN cognifive neuroscience and
neuropsychology.”

Sporns et al., PLOS Computational Biology 2005
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BCLD Signal

‘traditional’ IMRI overview

cheeseburgere

Time

‘activity’ = BOLD response to a stimulus
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Traditional IMRI

‘activity’ = BOLD response to a stimulus (burger)
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Functional connectivity (the ‘connectome’)

‘connectivity = temporal coherence
between brain regions

connectivity

-> ,\/‘/\/\/ =>  strength (1)
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Functional connectome

“what fires together,
wires together”



Functional connectivity (the ‘connectome’)

‘connectivity = temporal coherence
between brain regions
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connectivity
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Time =

“You jump, | jJump”
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Functional connectivity (the ‘connectome’)

‘connectivity = temporal coherence
between brain regions
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Brain state manipulation improves prediction

~3-12% variance in IQ
explained by models
using data from

different tggks M ol
a e PNC CPM results
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Condition
Condition

<5% variance in IQ
explained by model
using resting state data

Greene et al., Nature Communications, 2018
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Clinical relevance of brain state
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ORIGINAL ARTICLE

Real-Time Electronic Diary Reports of Cue Exposure
and Mood in the Hours Beftore Cocaine
and Heroin Craving and Use

David H. Epstein, PhD; Jessica Willner-Reid, BSc; Massoud Vahabzadeh, PhD;
Mustapha Mezghanni, MS; Jia-Ling Lin, PhD; Kenzie L. Preston, PhD

> ecological momentary assessment
> cocaine + opioid use disorders (N=114)

> track dynamic changes in mood and use

Epstein et al., Archives of General Psychiatry, 2009
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Different mood states predict opioids vs. cocaine

Results: During the 5 hours preceding cocaine use or
heroin craving, most of the 12 putative triggers showed
linear increases. Cocaine use was most robustly associ-
ated with increases in participants reporting that they “saw
[the] drug” (P<.001), were “tempted to use out of the
blue” (P<<.001), “wanted to see what would happen if
used” (P<<.001), and were in a good mood (P<<.001).
Heroin craving was most robustly associated with in-
creases in reports of feeling sad (P<<.001) or angry
(P=.01). Cocaine craving and heroin use showed few re-
liable associations with any of the putative triggers as-
sessed.

Epstein et al., Archives of General Psychiatry, 2009
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Brain state study design

" - ﬁ > e 12-week,
|'| || |'| outpatient
- - - treatment®
n " 0 ® ~ 0O
m () M 1
T T Pre Post
n=74%*

*opioid-dependent, methadone-maintained

*behavioral therapy +/- medication for cocaine-use

Yip et al., American Journal of Psychiatry, 2019
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Using connectome-based predictive modeling to
predict individual behavior from brain connectivity

Xilin Shenl, Emily S FinnZ, Dustin Scheinost!, Monica D Rosenberg3, Marvin M Chun?—4,
Xenophon Papademetris!> & R Todd Constable!»%6

Data-driven, whole-brain, machine
leaning approach
) Connectome-Based Prediction of Cocaine Abstinence
U ses conne C'I'O mes 'I'O p re d | C'I' Sarah W. Yip, Ph.D., M.Sc., Dustin Scheinost, Ph.D., Marc N. Potenza, M.D., Ph.D., Kathleen M. Carroll, Ph.D.
behavior
®
ore . o e . Dissociable neural substrates of opioid and cocaine use identified
|dentifies individual connections via connectome-based modelling
U n d e rl yi n g b e h G Vi O rG | p re d iC Ti O n S Sarah D. Lichenstein' - Dustin Scheinost’ - Marc N. Potenza® - Kathleen M. Carroll® - Sarah W. Yip?
Molecular Psychiatry www.nature.com/mp
Distinguishes positive and negative
T . ARTICLE —
pred Ictive connections Distinct neural networks predict cocaine versus cannabis
treatment outcomes
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A. Feature selection from connectomes

connectomes behavior negative predictor (negative edge)
= / B. Sum prediction weights (edges)
-E'i Tx iti
2 1 T Positive X,
» B Positive X,

>

- || TN Negative 4
2, X, /7. I Negative 2,
-
@ positive predictor

(positive edge)
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A. Feature selection from connectomes

connectomes behavior

3
fo) Tx;
-0
()]
TXo

Subject,

C. Fit brain-behavior model

= b
Jy=mx+

Summary score

Abstir{encé
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/ B. Sum prediction weights (edges)

TN Positive 2,
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|| TN Negative 2
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D. Apply model to new data
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Task (‘brain state’) selection

Opioid abstinence

cognitive conftrol task (n=71)

Incongruent Prospect Target (RT)

stimulus of reward
Delay (3-5s)

e Outcome (1200ms)
Congruent Anticipation
o ;
stimuli of reward YOU WON $5
Reward Total $11
receipt

connectomes % drug free Utox
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Brain-state specific prediction of abstinence
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Opioid Abstinence Cocaine Abstinence

Cocaine network replicated in 2 independent samples**

Yip et al., American Journal of Psychiatry, 2019*

Lichenstein, et al., Molecular Psychiatry, 2021, 2023*
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Cocaine abstinence network®

ol

2

N
»

Positive network —
increased connectivity
predicts abstinence

Negative network —
decreased connectivity

predicts abstinence

*only 539 connections, <2% of possible connections
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Dissociable opioid and cocaine networks

Consistent connections® Opposing connections

cocaine+ cocaine- cocaine+ cocaine-
opioid+ opioid- opioid- opioid+

*8 shared connections out of ~500
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‘Canonical’ networks

Networks

. 1 Medial frontal

2 Frontoparietal
. 3 Default mode
. 4 Sensori-motor
. 5 Visual a
- 6 Visualb

7 Visual asso
8 Salience
" 9 Subcortical ,
10 Cerebellum/ \ .} Lateral

brain stem

Horien et al., Neuroimage, 2019
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Cocaine network connectivity

no between network
connections

no difference between
networks

Positive network Negative network
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Yip et al., American Journal of Psychiatry, 2019
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Cocaine network connectivity

no between network
connections

no difference between
networks

Positive network Negative network
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Yip et al., American Journal of Psychiatry, 2019
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Cocaine network
anatomy summary

fronto- medial Coordination of attention
and executive control

parietal frontal

Yip et al., American Journal of Psychiatry, 2019
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Cocaine network
anatomy summary

fronto- medial Coordination of attention
and executive confrol

parietal frontal

between-network

between-network segregation

integration

Coordination of salience
encoding and reward
responding

sensory sub
motor cortical

Yip et al., American Journal of Psychiatry, 2019
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Opioid network
anatomy summary

>

motor/sens

medial frontal

o)

default mode

e frontoparietal
\ /

within- and between-network
integration

Lichenstein et al., Molecular Psychiatry, 2021
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Post-treatment connectivity predicts post-
treatment abstinence

Post-treatment fMRI (n=40)
ﬁm’i\ ﬁ\ Y

N rho=0.34, p=0.03*

rho=0.40, p<0.01*

NO changes in connectivity over time

*cocaine, *opioid
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Pathology versus prediction

« Pathophysiology may not predict abstinence
- what changes w/ abstinence # predict tx

. Igi’riql Vs sustained responses may have different
asis

- motivation to change > early tx response
- acquisition of new skills > sustained tx response

* Profracted neural changee

- abstinence rates improve post-treatment
- e.g., Carroll et al., Addiction, 2000
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Prediction versus pathology?
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Theoretical model

Addiction

Recovery

Restoration of structure
and function to
premorbid levels

R

Abstinence Maintenance
for monitoring relapse
risk and regulating drug
urges

Relapse Risk reflecting
prolonged vulnerability

B N

>

Return to
premorbid levels

Elevation of
function relative to
controls

Continued
vulnerability

Current Opinion in Neurobiology

Garavan et al., Current Opinion in Neurobiology, 2013
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Theoretical model

Return to premorbid

Healthy control

'

Abstinent T

Not abstinent

adapted from Garavan et al., Current Opinion in Neurobiology, 2013
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Healthy controls

n=38 controls participants n=53 patients
No substance-use disorders Cocaine + opioid use disorders
Drawn from ongoing Yale Recruited from RCT for CUD +
Psychiatry research protocols methadone treatment for OUD
38 years old (SD=9.06) 35 years old (SD=9.37)
58% male /4% male

identical acquisition, tasks & connectivity pipeline
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Cocaine network

0.15
p=.037

0.1
p<.001

0.05

-0.05

Network strength

-0.1

-0.15
Abstinent Not abstinent

Lichenstein et al., Molecular Psychiatry, 2021

Yale sCHOOL OF MEDICINE SLIDE 43



OD|O|d ﬂeTWOrk Healthy control
I /
035 p<.001 T I

0.3 Abstinent T
PR Not abstinent
e 0 p=.096 —
S Hyper functionality
o 015
S
2 ol
)

P

0.05

0

0.05 Abstinent Control Not abstinent

Lichenstein et al., Molecular Psychiatry, 2021
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What about addiction risk¢
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Welcome to the IMAGEN Study

London Nottingham Dublin Paris
A LA A LA
1S 1S

Berlin Dresden Hamburg Mannheim
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Sex-specitic neuromarkers of alcohol use

A  STUDY DESIGN

Age 14MRI (1 550 Reward ond inhibi’rory brain states

n!_’

fMRI Tasks: Collect functional connectivity AUDIT Map model
Reward data for CPM model input features back to
Inhibitory Control (details in B) (age 19) neuroanatomy
Age 19 MRI

MID

Yip et al., JAMA Psychiatry, 2023
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Study design + analysis workflow
500
Age 14
400
A STuDY DESIGN 2 300
Age 14 MRI g
B 200
100
fMRI Tasks: 0 10 15 20
Reward
Inhibitory Control
Age 19 MRI 120

100
No use

o]
o

Frequency

[=2]
o

Hazardous-risk use
Alcohol-use disorder

N
o

N
(=}

0

0 5 10 15 20 25 30

Yip et al., JAMA Psychiatry, 2023
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Sex-specitic neuromarkers of alcohol use

A STuDY DESIGN Reward and inhibitory brain states
Age 14 MRI N:'Isso
—_—r MID
‘I:E
fMRI Tasks: Collect functional connectivity Map model
Reward data for CPM model input features back to
Inhibitory Control (details in B) neuroanatomy

Age 19 MRI

MID

R P
20 .R“‘.
(vL/ 21/
5 (FOul
\l\-k.‘y‘-"‘ —
| [N
S

Leave-one-site-out prediction

London Nottingham Dublin Paris
S LA

\IZ
N 1 NS

Berlin Dresden Hamburg Mannheim
Yip et al., JAMA Psychiatry, 2023
Yale scHOOL OF MEDICINE
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Leave-one-site-out prediction of alcohol-use

Future severity (age 14, N=1550)

0.3

0.2
0 [] L]

Both Female Male Both Female Male

Predictive accuracy

Reward Inhibition

Yip et al., JAMA Psychiatry, 2023
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Leave-one-site-out prediction of alcohol-use

Current severity (age 19, N=1207)

0.2
0.1 I I
0 [

Both Female Male Both Female Male
Inhibition

—
w

Predictive accuracy

Reward

Brain states Brain state
similar specificity

Yip et al., JAMA Psychiatry, 2023
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Age 14

Age 19
Male Fem Male Fem
I

Network overlap across models and states

Age 14
, Fem Male
R I R |
14
_.<— High
overl

14

<.01
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Age 19

Fem Male

R I R

brain state
ap in females

<«——— Llow brain state

Age 14

verlap in males

.52

Age 19

Age 14 Age 19
Fem Male Fem Male

"R I R 1 R I R I

— . «—— High brain state

overlap in females
<—Low brain state
oVYerlap in males

Y
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Age 14

Age 19
Male Fem Male Fem

Network overlap across models and states

Age 14 Age 19
3, Fem Male Fem Male
R I R I R 1 R I

bz -ttbghtmnmlmmapimmes

14

R

<.01
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Female network anatomy, age 14

A. Reward task data

MF
FP
DMN
MOT
VIST
VIS2
VAS
SAL
sC
CBL

Positive network
B. Inhibitory task data

MF
FP
DMN
MOT
VIST
VIS2
VAS
SAL
sC
CBL

Positive network
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Negative network

Negative network

-0.1

-0.1

Virtual lesion

MF
FP
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SAL
sC
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Virtual lesion
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SC essss——
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Female network anatomy, age 19

A. Reward task data

MF MF

FP FP
DMN DMN
MOT MOT
VIST VIST
VIS2 VIS2
VAS VAS
SAL SAL

SC
CBL

SC
CBL

Positive network

B. Inhibitory task data

MF MF

FP FP
DMN DMN
MOT MOT
VIST VIST
VIS2 VIS2
VAS VAS

SAL
SC
CBL

SAL

sC

CBL
Positive network
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Negative network
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-0.1

Virtual lesion
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V| it
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SAL
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0 0.1 0.2 0.3

Virtual lesion
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0.4

0.4
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Male network anatomy, age 19

Inhibitory task data Virtual lesion

MF [ MF MF =
FP FP FP o

DMN DMN DMN s

MOT MOT MOT  m——

VIS1 VIS1 VIS1 =

VIS2 VIS2 VIS2 e

VAS VAS VAS s

SAL SAL SAL s
SC SC SC ms—

CBL CBL CBL s

Positive network Negative network -0.1 0 0.1 0.2 0.3 0.4

Yip et al., JAMA Psychiatry, 2023
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Sensitivity analyses

o Multi-task prediction (reward + inhibition):
o Comparable performance in females (ages 14 & 19)

o Decreased performance in males (age 19)
- Not all brain states created equal

o Models robust and unchanged after controlling for:
o Baseline alcohol-use (age 14)
o Residual motion
o Trait impulsivity
o Traif neuroficism — specific fo alcohol
o Ofther substance use

Yip et al., JAMA Psychiatry, 2023
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Independent sample replication (N=114)

Adolescents recruited in 800 r=.20, p=.03

Connecticut, USA

Brain and Alcohol Research in
College Students (BARCS)

400

Go/No-Go task

200

Alcohol neuromarker (sex agnostic)

18.42 years old (SD=0.76)

0 5 10 15 20 25 30
54% male Largest # drinks/24 hours

Ditferent country, scanner, alcohol-use measure
Same underlying neurobiology!!!

Yip et al., JAMA Psychiatry, 2023
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Cannabis-use In college students (n=191)

medial frontal (MF) medial frontal (MF)
frontoparietal (FP) frontoparietal (FP)
default mode (DM) default mode (DM)

motorsensory (MS) motorsensory (MS) -
visual A (VA) visual A (VA)
visual B (VB) visual B (VB)
visual assoc (VAs) visual assoc (VAs)

salience (SA) salience (SA) -
subcortical (SC) subcortical (SC)

cerebellar (CB) cerebellar (CB) -
MF FP DM MS VA VB VAs SA SC CB MF FP DM MS VA VB VAs SA SC CB

CPM identified a neural network of problem cannabis
use in non-clinical sample (rho=.21, p=.009).

Replicated in geographically distinct adolescent
sample (n=838, =2.802 p=0.0095).

/ s :
Dr. Sarah Lichenstein Lichenstein et al., Under Revision, Biological Psychiatry
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Network application in clinical sample (n=33)

Problem cannabis network

) e Applied to independent sample of 50 Assess relationship with clinical
identified in college sample patients entering cannabis freatment

- characteristics
= 40
o))
[
230
)
V4
g 20
|| ©
- 10
[ |
0

Responder Non-Responder

Patients with higher problem cannabis network strength:
- greater baseline addiction severity (rho=.38, p=.03)

- less abstinence during treatment (rho=-.38, p=.03)

i

Dr. Sarah Lichenstein

Lichenstein et al., Under Revision, Biological Psychiatry
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Conclusions, recommendatiions & next steps
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Abstinence & risk networks are...

Clinically relevant
« predict real-world outcomes

Externally valid
* generalize to novel settings and individuals

Robust
« predict after controlling for severity, related phenotypes

Biologically meaningful
« specific connections subserving specific behaviors
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Maximizing anatomical insights in
connectome-wide association studies

Connection / Region / Network / Theory /
edge level node level systems level mechanism level

H E
Bl |

Levels of interpretation

Yip et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020
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Mechanism as a goal of prediction

identify features assess performance  summarize connections

\ J

1o . | propose theoretical model

sub
cortical

sensory
motor

Yip et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020

medial
frontal

fronto-
parietal

performance excluding
individual networks
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An Official Journal of the Society of Biological Psychiatry

Biological Psychiatry:

Cognitive Neuroscience and Neuroimaging

Volume 5, Number 8
August 2020

Connection (or

edge) level
P

Region (or node)
level

re

Network level

Interpretation levels
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Recommendations for clinical prediction

1. Define Question

identify clinical population

2. Select timing of fMRI

pre-tx, early in tx, post-tx?

define window of assessment

3. Collect baseline data
acquire neuroimaging data

acquire baseline clinical data

4. Collect longitudinal data
measure substance use over time

collect treatment-related measures

5. Select algorithm

is outcome categorical or continuous?

ROI/NOI- or data-driven approach?

6. Separate data and run
predictive model

Cross-validation
a. Split data into train and test
Example fold of LOOCV:

Case
I

Control :

|
Case |

c. Predict testing data
d. Repeat steps a-c

e. Optional: nested CV
f. Optional: external validation

7. Evaluate model
compare actual and predicted values

quantify statistically using permutation

testing (required for CV)

8. Understand results
check for effects of other variables
post-hoc testing (e.g., virtual lesioning)

update theoretical framework

9. Improve clinical care
develop/improve tx based on findings

conduct additional research to refine

predictive model

Yip et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020
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Longitudinal relevance of brain state
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Does connecitivity change in tfreatmente

i . L 10 people scanned over
Prior cross-sectional findings 68 sessions

Acquiring 60 more scans
from 10 people

............................... . >120 individual sessions
. from 20 people

Connectivity strength

@ Abstinent (OP-) @ Not Abstinent (OP+)

* Ongoing longitudinal work

Weekly scanning for two months

W1 W2 W3 W4 WS Wé W7 W8
Weekly Utox, Substance Use Calendar, etc
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Connectivity strength

Does connecitivity change in tfreatmente

10 people scanned over

Theoretical model 68 sessions
250 relopse Acquiring 60 more scans
. from 10 people
preventione
200 >120 individual sessions
from 20 people
150
@ Abstinent
100
@ Not Abstinent
50 7 N :
@ Cycling use
0
W1 W2 W3 W4 W5 Wé W7 W8

Weekly assessments

Yip & Konova, Neuropsychopharmacology, 2021
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Densely sampled neuroimaging for maximizing clinical insight
in psychiatric and addiction disorders
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Ten simple rules for predictive modeling of individual differences N
in neuroimaging e
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Toward Addiction Prediction: An Overview of
Cross-Validated Predictive Modeling Findings
and Considerations for Future Neuroimaging

Research

Sarah W. Yip, Brian Kiluk, and Dustin Scheinost
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